
Unit -3 

Hibernate: Understanding object persistence 

Hibernate is a high-performance Object/Relational persistence and query service, which is 

licensed under the open source GNU Lesser General Public License (LGPL) and is free to 

download. Hibernate not only takes care of the mapping from Java classes to database tables 

(and from Java data types to SQL data types), but also provides data query and retrieval 

facilities. This tutorial will teach you how to use Hibernate to develop your database based web 

applications in simple and easy steps. 

Hibernate is an Object-Relational Mapping (ORM) solution for JAVA. It is an open source 

persistent framework created by Gavin King in 2001. It is a powerful, high performance 

Object-Relational Persistence and Query service for any Java Application. 

Hibernate maps Java classes to database tables and from Java data types to SQL data types and 

relieves the developer from 95% of common data persistence related programming tasks. 

Hibernate sits between traditional Java objects and database server to handle all the works in 

persisting those objects based on the appropriate O/R mechanisms and patterns. 

 

Hibernate Advantages 

 Hibernate takes care of mapping Java classes to database tables using XML files and 

without writing any line of code. 

 Provides simple APIs for storing and retrieving Java objects directly to and from the 

database. 

 If there is change in the database or in any table, then you need to change the XML file 

properties only. 

 Abstracts away the unfamiliar SQL types and provides a way to work around familiar 

Java Objects. 

 Hibernate does not require an application server to operate. 

 Manipulates Complex associations of objects of your database. 



 Minimizes database access with smart fetching strategies. 

 Provides simple querying of data. 

Supported Databases 

Hibernate supports almost all the major RDBMS. Following is a list of few of the database 

engines supported by Hibernate − 

 HSQL Database Engine 

 DB2/NT 

 MySQL 

 PostgreSQL 

 FrontBase 

 Oracle 

 Microsoft SQL Server Database 

 Sybase SQL Server 

 Informix Dynamic Server 

Hibernate has a layered architecture which helps the user to operate without having to know 

the underlying APIs. Hibernate makes use of the database and configuration data to provide 

persistence services (and persistent objects) to the application. 

Following is a very high level view of the Hibernate Application Architecture. 

 



Following is a detailed view of the Hibernate Application Architecture with its important core 

classes. 

 

Hibernate uses various existing Java APIs, like JDBC, Java Transaction API(JTA), and Java 

Naming and Directory Interface (JNDI). JDBC provides a rudimentary level of abstraction of 

functionality common to relational databases, allowing almost any database with a JDBC driver 

to be supported by Hibernate. JNDI and JTA allow Hibernate to be integrated with J2EE 

application servers. 

Following section gives brief description of each of the class objects involved in Hibernate 

Application Architecture. 

Configuration Object 

The Configuration object is the first Hibernate object you create in any Hibernate application. 

It is usually created only once during application initialization. It represents a configuration or 

properties file required by the Hibernate. 

The Configuration object provides two keys components − 



 Database Connection − This is handled through one or more configuration files 

supported by Hibernate. These files are hibernate.properties and hibernate.cfg.xml. 

 Class Mapping Setup − This component creates the connection between the Java 

classes and database tables. 

SessionFactory Object 

Configuration object is used to create a SessionFactory object which in turn configures 

Hibernate for the application using the supplied configuration file and allows for a Session 

object to be instantiated. The SessionFactory is a thread safe object and used by all the threads 

of an application. 

The SessionFactory is a heavyweight object; it is usually created during application start up 

and kept for later use. You would need one SessionFactory object per database using a separate 

configuration file. So, if you are using multiple databases, then you would have to create 

multiple SessionFactory objects. 

Session Object 

A Session is used to get a physical connection with a database. The Session object is 

lightweight and designed to be instantiated each time an interaction is needed with the database. 

Persistent objects are saved and retrieved through a Session object. 

The session objects should not be kept open for a long time because they are not usually thread 

safe and they should be created and destroyed them as needed. 

Transaction Object 

A Transaction represents a unit of work with the database and most of the RDBMS supports 

transaction functionality. Transactions in Hibernate are handled by an underlying transaction 

manager and transaction (from JDBC or JTA). 

This is an optional object and Hibernate applications may choose not to use this interface, 

instead managing transactions in their own application code. 

Query Object 

Query objects use SQL or Hibernate Query Language (HQL) string to retrieve data from the 

database and create objects. A Query instance is used to bind query parameters, limit the 

number of results returned by the query, and finally to execute the query. 

Criteria Object 



Criteria objects are used to create and execute object oriented criteria queries to retrieve objects. 

 


	Hibernate Advantages
	Supported Databases
	Configuration Object
	SessionFactory Object
	Session Object
	Transaction Object
	Query Object
	Criteria Object

